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Abstract
We consider the model in two dimensions with boundary quadratic deformation
(BQD), which has been discussed in tachyon condensation. The partition
function of this model (BQD) on a cylinder is determined using the method
of zeta function regularization. We show that, for closed channel partition
function, a subtraction procedure must be introduced in order to reproduce
the correct results at conformal points. The boundary entropy (g-function) is
determined from the partition function and the off-shell boundary state. We
propose and consider a supersymmetric generalization of the BQD model,
which includes a boundary fermion mass term, and check the validity of the
subtraction procedure.

PACS numbers: 02.10.De, 02.30.Sa, 11.25.Sq, 11.30.Pb

1. Introduction

Quantum field theories on manifolds with boundaries have been studied actively in recent years.
They play important roles in various areas of physics. In particular, since the proposal of Sen’s
conjecture on tachyon condensation [1], the boundary string field theory [2, 3] has received
considerable attention [4, 5]. With regard to this last development, the two-dimensional off-
critical model with boundary quadratic deformation (BQD) has been considered. It describes
an off-shell renormalization group flow from the Neumann boundary condition to the Dirichlet
boundary condition. The closed channel partition function on a cylinder has been considered
by using the method of thermodynamic Bethe ansatz in the long cylinder limit [6]; see, for
instance, [7–9] for related calculation.

In this paper, taking the BQD model with more general boundary conditions, we re-
examine the partition function by another method without taking the long cylinder limit.
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In order to get a finite expression for the closed channel partition function, we propose a
subtraction procedure which follows the zeta function regularization. From the expression of
the partition function, the g-function is determined with the help of an off-shell boundary state
[6, 10].

To check the validity of our subtraction procedure, we also consider a supersymmetric
generalization of the BQD model. The BQD model can be considered as a weak interaction
limit of the boundary sine-Gordon model [11]. We propose a supersymmetric generalization
of the BQD model (SBQD model) of tachyon condensation [4, 5] as the weak interaction
limit of a supersymmetric boundary sine-Gordon model. (For the bosonic counterpart of this
statement, see [12, 13].)

Let us briefly recall the supersymmetric sine-Gordon model on a half-line [14, 15]. The
following action is conjectured to be integrable [15] (see, in particular, the note added),

S = 1

2π

∫ ∞

−∞
dσ 2

∫ 0

−∞
dσ 1L0 +

1

4π

∫ ∞

−∞
dσ 2Lb (1.1)

where

L0 = 2

α′ ∂̄X∂X + ψ∂̄ψ + ψ̃∂ψ̃ − m2

λ2α′ (cosλX − 1) + imψ̃ψ cos
λ

2
X

Lb = a∂2a + ω−1
0 λρ1/2a(ψ − iψ̃) cos

λ

4
(X − χ0) (1.2)

− 4

α′

(

 cos

λ

2
(X − X0)− ρ

)
+ iψ̃ψ|σ 1=0.

Here ω0 = eiπ/4, z = σ 1 + iσ 2 and a = a(σ2) is an auxiliary fermionic field. The parameters
ρ (>0) and χ0 are related to 
(>0) and X0 by the conditions

ρ sin
λ

2
χ0 = 
 sin

λ

2
X0 ρ cos

λ

2
χ0 = 
 cos

λ

2
X0 − 2m

λ2
. (1.3)

Let us consider the massless case m = 0. Then ρ = 
 and χ0 = X0, and we find

L0 = 2

α′ ∂̄X∂X + ψ∂̄ψ + ψ̃∂ψ̃

Lb = a∂2a + ω−1
0 λ
1/2a(ψ − iψ̃)− 4


α′

(
cos

λ

2
(X −X0)− 1

)
+ iψ̃ψ|σ 1=0.

(1.4)

If we take the λ = 0 limit with h = λ
1/2 fixed, then the boundary Lagrangian becomes

Lb = a∂2a + ω−1
0 ha(ψ − iψ̃) +

h2

2α′ (X −X0)
2 + iψ̃ψ|σ 1=0. (1.5)

The bosonic sector is the BQD model and the fermionic sector is the Ising model with the
boundary magnetic field [11, 16, 17]. This action differs from that in [5, 12] by the presence of
the boundary fermion mass term. Inspired by this result, we propose that the action of SBQD
model on a cylinder is given by equation (3.1). As for the Ising model on a cylinder with
boundary magnetic fields, the g-functions are calculated by other methods in the long cylinder
length limit [16, 17]. By using our subtraction procedure, we determine the g-functions. The
results agree with those of [16, 17]. Also, some of the results reproduce those of [8, 9].

This paper is organized as follows. The BQD model on the cylinder is considered in
section 2. The SBQD model is examined in section 3. Section 4 is devoted to discussion.



Normalization of off-shell boundary state, g-function and zeta function regularization 9397

2. BQD model on a cylinder

In two-dimensional Euclidean space, the action of the boundary quadratic deformation (BQD)
model on a cylinder is given by

S[X] =
∫ 2πr

0
dσ 2L (2.1)

where

L = 1

4πα′

[∫ l

0
dσ 1(∂aX)

2 + v(X −X0)
2
∣∣
σ 1=0 + v′(X −X′

0)
2
∣∣
σ 1=l

]
. (2.2)

We consider the cylinder of the length l and circumference 2πr .
The boundary conditions at σ 1 = 0 and σ 1 = l are of mixed type:

∂1X − v(X −X0)|σ 1=0 = 0 ∂1X + v′(X −X′
0)|σ 1=l = 0. (2.3)

We denote the mixed-type boundary condition by B = B(u) where u = rv. Also, we
denote the Dirichlet-type boundary condition byD = B(∞) and the Neumann-type boundary
condition by N = B(0).

We can expand

X(σ 1, σ 2) = X̂0(σ
1) + X̃(σ 1, σ 2) (2.4)

where the zero eigenvalue function is given by

X̂0(σ
1) = 1

w + w′ + ww′ [ww′(X′
0 −X0)(σ

1/l) + (w +ww′)X0 + w′X′
0]. (2.5)

Here w = vl and w′ = v′l. By substituting the expansion into the Lagrangian, we have

L = 1

4πα′

∫ l

0
dσ 1 [(∂2X̃)

2 + X̃
(−∂2

1

)
X̃
]

+
1

4πα′l
ww′

(w +w′ +ww′)
(X0 −X′

0)
2. (2.6)

The oscillating modes are expressed as

X̃(σ 1, σ 2) =
∞∑
j=1

Xj(σ
2)fj (σ

1) (2.7)

where

fj (σ
1) = (−1)j

√
πα′

lρ(νj )

[
(πνj − iw)√
(πνj )2 +w2

eiπνj σ 1/l +
(πνj + iw)√
(πνj )2 +w2

e−iπνj σ 1/l

]

= −
√

πα′

lρ(νj )

[
(πνj + iw′)√
(πνj )2 + (w′)2

eiπνj (σ 1−l)/l +
(πνj − iw′)√
(πνj )2 + (w′)2

e−iπνj (σ 1−l)/l
]
.

(2.8)

Here the density function is given by

ρ(k) = 1 +
w

π2k2 + w2
+

w′

π2k2 + (w′)2
(2.9)

and the constants νj are the positive solutions of the following relation [9]:

e2π iνj
(πνj − iw)

(πνj + iw)

(πνj − iw′)
(πνj + iw′)

= 1. (2.10)

Here the normalization is chosen such that
1

2πα′

∫ l

0
dσ 1fj (σ

1)fk(σ
1) = δjk (2.11)
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and we have arranged the solutions in increasing order:

0 � ν1 < ν2 < · · · < νj < νj+1 < · · · . (2.12)

Then

L =
∞∑
j=1

1

2

[
(∂2Xj)

2 +
(πνj
l

)2
X2
j

]
+

1

4πα′l
ww′

(w +w′ +ww′)
(X0 − X′

0)
2. (2.13)

2.1. Some properties of {νj }
For later convenience, let us rewrite equation (2.10) in the following form,

F
(−)
BB′ (νj ) = 0 (2.14)

where

F
(−)
BB′ (k) = 1

2

[
1 − e2π ik

(
πk − iw

πk + iw

)(
πk − iw′

πk + iw′

)]

= ieπ ikπk

(πk + iw)(πk + iw′)

[
(w +w′) cos(πk) + (ww′ − π2k2)

sin(πk)

πk

]
. (2.15)

Here B = B(u) and B ′ = B(u′), u′ = rv′.
Let us examine the following entire function:

F−(k) :=
[
(w +w′) cos(πk) + (ww′ − π2k2)

sin(πk)

πk

]
. (2.16)

It is an even function and has zeros at k = ±νj , F−(0) = (w+w′ +ww′). The key observation
is that it can be written as an infinite product:

F−(k) = (w +w′ + ww′)
∞∏
j=1

[
1 − k2

ν2
j

]
. (2.17)

Therefore,

F
(−)
BB′ (k) = ieπ ikπk

(πk + iw)(πk + iw′)

[
(w + w′) cos(πk)− {(πk)2 −ww′} sin(πk)

πk

]

= ieπ ikπk(w +w′ +ww′)
(πk + iw)(πk + iw′)

∞∏
j=1

[
1 − k2

ν2
j

]
. (2.18)

At conformal points, νj can be written explicitly.

(i) For DD boundary condition (w = ∞ and w′ = ∞),

F
(−)
DD (k) = 1

2
(1 − e2πk) = −ieπ ik sin(πk) = −ieπ ikπk

∞∏
j=1

[
1 − k2

j 2

]
(2.19)

νj = j j = 1, 2, . . . . (2.20)

(ii) For DN (w = ∞ and w′ = 0) or ND (w = 0 and w′ = ∞),

F
(−)
DN (k) = F

(−)
ND (k) = 1

2
(1 + e2πk) = eπ ik cos(πk) = eiπk

∞∏
j=1

[
1 − k2

(j − 1/2)2

]
(2.21)

νj = j − 1
2 j = 1, 2, . . . . (2.22)
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(iii) For NN (w = 0 and w′ = 0),

F
(−)
NN (k) = 1

2
(1 − e2π ik) = −ieπ ik sin(πk) = −ieπ ikπk

∞∏
j=2

[
1 − k2

(j − 1)2

]
(2.23)

νj = j − 1 j = 1, 2, . . . . (2.24)

Other limits are

F
(−)
BD (k) = 1

2

[
1 + e2π ik

(
πk − iw

πk + iw

)]
= eiπkπk(1 +w)

(πk + iw)

[
cos(πk) +w

sin(πk)

πk

]

= eiπkπk(1 +w)

(πk + iw)

∞∏
j=1

[
1 − k2

ν2
j

]
. (2.25)

F
(−)
BN (k) = 1

2

[
1 − e2π ik

(
πk − iw

πk + iw

)]
= eiπk iw

(πk + iw)

[
cos(πk)− πk

w
sin(πk)

]

= eiπk iw

(πk + iw)

∞∏
j=1

[
1 − k2

ν2
j

]
. (2.26)

Comparing expressions (2.18) and (2.23), cancellation of two poles and two zeros should
occur for w → 0 and w′ → 0 limit:

lim
w,w′→0

(w + w′ + ww′)
(πk + iw)(πk + iw′)

[
1 − k2

ν2
1

]
= −1. (2.27)

Thus for small w and w′, the smallest solution ν1 approaches zero as

πν1 ∼
√
w + w′ + ww′ ∼

√
w +w′. (2.28)

2.2. The path integral approach

Let us evaluate the partition function

ZBB′ =
∫

[dX] e(−S[X]). (2.29)

We can quantize the Lagrangian (2.13) by the standard method of functional integrations
(see e.g. appendix A of [18]). We adopt a different approach which will be convenient for our
purposes. In this approach, we impose the periodic boundary condition in the σ 2-direction
and we further expand the oscillating modes as

Xj(σ
2) =

∑
m∈Z

Am,j cm(σ
2) (2.30)

where c0(σ
2) = (2πr)−1/2, and cm(σ

2) = (πr)−1/2 sin(mσ 2/r), c−m(σ 2) = (πr)−1/2

cos(mσ 2/r) form > 0.
Note that ∫ 2πr

0
dσ 2cm(σ

2)cn(σ
2) = δmn m, n ∈ Z. (2.31)

The action S becomes

S = Scl +
∑
m∈Z

∞∑
j=1

1

2

[(m
r

)2
+
(πνj
l

)2
]
(Am,j )

2 (2.32)
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where

Scl = τ2

2πα′
ww′

w +w′ + ww′ (X0 −X′
0)

2 τ2 = πr/l. (2.33)

Then the partition function is given by

ZBB′(X0 −X′
0) = e−SclZBB′(0) (2.34)

where

ZBB′(0) = Det−1/2 (−∂2
1 − ∂2

2

) =

∏
m∈Z

∞∏
j=1

[
(m/r)2 + (πνj / l)2

]
−1/2

. (2.35)

Formally, this divergent quantity can be written as

ZBB′(0) =
∞∏
j=1

(
l

πνj

)
·

∞∏
m=1

∞∏
j=1

[
(m/r)2 + (πνj / l)2

]−1
. (2.36)

We apply the zeta function regularization naively for each infinite product. We regularize
the partition function in two steps. Applying the zeta function regularization in different order,
we will obtain two equivalent expressions for the partition function.

First, we start from the m-product. We regularize
∞∏
m=1

[
(m/r)2 + (πνj / l)2

] =
∞∏
m=1

(m
r

)2
·

∞∏
m=1

[
1 +

(τ2νj

m

)2
]

(2.37)

into (
l

πνj

)
q−νj /2(1 − qνj ) (2.38)

where q = e−2πτ2 and τ2 = πr/l. Then we get the still divergent expression of the partition
function:

ZBB′(0) =
∞∏
j=1

qνj /2(1 − qνj )−1. (2.39)

The divergence comes from the infinite Casimir energy.
We regularize the Casimir energy and obtain the first regularized expression,

Z
(1)
BB′(0) = q(1/2)c

(−)
BB′

∞∏
j=1

(1 − qνj )−1 (2.40)

where

c
(−)
BB′ =

∫ ∞

0
dt 2t ρ(it)

[
1 − e2πt

(
πt +w

πt −w

)(
πt + w′

πt − w′

)]−1

. (2.41)

See appendix for details.
Secondly, we regularize the partition function from the j -product. Note that

∞∏
j=1

[
(m/r)2 + (πνj / l)2

] =
∞∏
j=1

(πνj
l

)2
·

∞∏
j=1

[
1 +

(τ̃2m)
2

ν2
j

]
(2.42)

where τ̃2 = l/πr = 1/τ2. Substituting k = iτ̃2m into (2.18), we have an identity
∞∏
j=1

[
1 +

(τ̃2m)
2

ν2
j

]
= (m + u)(m + u′)

2m(u + u′ + πτ̃2uu′)
q̃−(1/2)m

[
1 −

(
m− u

m + u

)(
m− u′

m + u′

)
q̃m
]

(2.43)
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where u = rv, u′ = rv′ and q̃ = e−2πτ̃2 . We need to regularize the following infinite product:

G(u, u′) :=
∞∏
m=1

(m + u)(m + u′)
2m(u + u′ + πτ̃2uu′)

= e−γ (u+u′)

�(u + 1)�(u′ + 1)

∞∏
m=1

{
m e(u+u′)/m

2(u + u′ + πτ̃2uu′)

}
.

(2.44)

Here γ is Euler’s constant.
We regularize the divergent sum as

∞∑
m=1

u

m
→

∞∑
m=1

( u
m

)s
= usζ(s) Re s > 1. (2.45)

As s approaches 1, the regularized quantity behaves as

usζ(s) = u

s − 1
+ γ u + u logu + O(s − 1)

= su

s − 1
+ γ u + u logu− u + O(s − 1). (2.46)

Our subtraction procedure is to replace the divergent sum
∑
(u/m) by

lim
s→1

(
usζ(s)− su

s − 1

)
= γ u + u logu− u. (2.47)

Then the resulting expression is given by

G(u, u′) =
√

4π(u + u′ + πτ̃2uu
′)1/2

�(u + 1)�(u′ + 1)

(u
e

)u (u′

e

)u′

. (2.48)

The subtraction part is chosen such that the expression has a consistent zeta function
regularization relation for large u, u′. For example,G(∞,∞) = ∏∞

m=1(2πτ̃2m)
−1 = (τ̃2)

1/2.
Then, finally we have another expression,

Z
(2)
BB′(0) = 1√

4π

�(1 + u)�(1 + u′)
(u + u′ + πτ̃2uu′)1/2

( e
u

)u ( e
u′
)u′

× q̃−1/24
∞∏
m=1

(
1 −

(
m− u

m + u

)(
m− u′

m + u′

)
q̃m
)−1

. (2.49)

Therefore we conjecture the equality of the two expressions ofZBB′(0), (2.40) and (2.49),
Z
(1)
BB′(0) = Z

(2)
BB′(0). This is consistent with [8, 9].

We can check our conjecture at conformal points. Indeed,

Z
(1)
DD(0) = q−1/24

∞∏
n=1

(1 − qn)−1 Z
(2)
DD(0) = 1√

τ̃2
q̃−1/24

∞∏
n=1

(1 − q̃n)−1 (2.50)

Z
(1)
ND(0) = q1/48

∞∏
n=1

(
1 − q(n−1/2)

)−1
Z
(2)
ND(0) = 1√

2
q̃−1/24

∞∏
n=1

(1 + q̃n)−1. (2.51)

For the NN case ν1 becomes zero, so we set

Ẑ
(i)
NN(0) := lim

u,u′→0
(1 − qν1)Z

(i)
BB′(0) i = 1, 2. (2.52)

Using equation (2.28), we have

Ẑ
(1)
NN(0) = q−1/24

∞∏
n=1

(1 − qn)−1 Ẑ
(2)
NN(0) = 1√

τ̃2
q̃−1/24

∞∏
n=1

(1 − q̃n)−1. (2.53)

Thus we see that in the limiting cases we have obtained the correct results: Z(1)DD(0) = Z
(2)
DD(0),

Z
(1)
ND(0) = Z

(2)
ND(0), Ẑ

(1)
NN(0) = Ẑ

(2)
NN(0).
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2.3. Boundary states and g-function

Let us express ZBB′ by using boundary states:

(∂1X − v(X −X0))|σ 1=0|B(u);X0〉 = 0. (2.54)

The mode expansion of X is given by

X(σ 1, σ 2) = x − iα′

r
pσ 1 + i

√
α′

2

∑
n �=0

1

n

(
αn e−n(σ 1+iσ 2)/r + α̃n e−n(σ 1−iσ 2)/r

)
(2.55)

and the commutation relations are

[x, p] = i [αm, αn] = mδm+n,0 [α̃m, α̃n] = mδm+n [αm, α̃n] = 0. (2.56)

Our normalization for the momentum and position eigenstates is

〈k|k′〉 = δ(k − k′) 〈X|X′〉 = δ(X −X′) 〈X|k〉 = 1√
2π

eikX. (2.57)

The oscillator vacuum |0〉α is normalized as α〈0|0〉α = 1. The vacuum state is denoted by
|0〉 = |k = 0〉 ⊗ |0〉α. The Hamiltonian of the system is

H = 1

r

(
L0 + L̃0 − 1

12

)
(2.58)

where

L0 = α′

4
p2 +

∑
n>0

α−nαn L̃0 = α′

4
p2 +

∑
n>0

α̃−nα̃n. (2.59)

The boundary state is given by

|B(u);X0〉 = N (u) exp
(
− u

2α′ (x −X0)
2
)

exp

(
−

∞∑
n=1

1

n

(
n− u

n + u

)
α̃−nα−n

)
|0〉 (2.60)

where

N (u) = (2α′)−1/4
( e
u

)u
�(1 + u). (2.61)

The normalization N (u) is fixed by requiring

Z
(2)
BB′(X0 −X′

0) = 〈B(u′);X′
0| e−lH |B(u);X0〉. (2.62)

The Neumann boundary state is

|N〉 = lim
u→0

|B(u);X0〉 = (2α′)−1/4 exp

(
−

∞∑
n=1

1

n
α̃−nα−n

)
|0〉. (2.63)

The Dirichlet boundary state is

|D;X0〉 = lim
u→∞ |B(u);X0〉 = (2π2α′)1/4 exp(−iX0p) exp

( ∞∑
n=1

1

n
α̃−nα−n

)
|0〉〉. (2.64)

Here |0〉〉 = |X = 0〉 ⊗ |0〉α .
It is easy to evaluate the g-function

g(u) := 〈0|B(u);X0〉 = (α′/2)1/4(2πu)−1/2�(u + 1)(e/u)u. (2.65)

In the IR limit, gIR = g(∞) = 〈0|D;X0〉 = (α′/2)1/4, and in the UV limit, gUV = g(0) =
〈0|N〉 = (2α′)−1/4 δ(0) = ∞. We see that gUV/gIR = (α′)−1/2δ(0) = ∞. This is consistent
with the g-theorem [19].
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3. SBQD model on a cylinder

We propose that the action of the supersymmetric BQD model on the cylinder is given by

S = 1

2π

∫ 2πr

0
dσ 2

∫ l

0
dσ 1L0 +

1

4π

∫ 2πr

0
dσ 2Lb (3.1)

where

L0 = 2

α′ ∂z̄X∂zX + ψ∂z̄ψ + ψ̃∂zψ̃

Lb = a1∂2a1 + hω−1
0 a1(ψ + iψ̃) +

1

2α′ h
2(X − X0)

2 + iψ̃ψ|σ 1=0 (3.2)

+ a2∂2a2 + h′ω−1
0 a2(ψ − iψ̃) +

1

2α′ (h
′)2(X −X′

0)
2 + iψ̃ψ|σ 1=l .

Here ω0 = eiπ/4 and h, h′ ∈ R.
The action is a direct sum of a bosonic part and a fermionic part: S = S[X] + S[ψ, ψ̃ ].

Thus the partition function of the SBQD model factorizes as Z = Z
(X)
BB′Z(ψ)(h, h′).

From this action, we have the following boundary conditions:

∂1X − 1
2h

2(X − X0)|σ 1=0 = 0 ∂1X + 1
2 (h

′)2(X − X′
0)|σ 1=l = 0 (3.3)

ψ − iψ̃ + hω−1
0 a1|σ 1=0 = 0 ψ + iψ̃ + h′ω−1

0 a2|σ 1=l = 0 (3.4)

2∂2a1 − hω−1
0 (ψ + iψ̃)|σ 1=0 = 0 2∂2a2 + h′ω−1

0 (ψ − iψ̃)|σ 1=l = 0. (3.5)

After integrating over the auxiliary fermionic fields a1(σ
2) and a2(σ

2), the boundary conditions
become

∂1X − v(X −X0)|σ 1=0 = 0 ∂1X + v′(X −X′
0)|σ 1=l = 0 (3.6)

(∂2 − iv)ψ|σ 1=0 = i(∂2 + iv)ψ̃ |σ 1=0 (∂2 + iv′)ψ|σ 1=l = −i(∂2 − iv′)ψ̃ |σ 1=l . (3.7)

Here v = 1
2h

2, v′ = 1
2 (h

′)2. With this identification of parameters, the bosonic part is the
same as that of the previous section.

From now on, we consider the fermionic part only. Let us expand

ψ(z) =
∑
l

bl eiklz ψ̃(z̄) =
∑
l

b̃l e−ikl z̄. (3.8)

Then

b̃l = −i

(
kl + iv

kl − iv

)
bl = i

(
kl − iv′

kl + iv′

)
e2ikl lbl. (3.9)

Thus the momentum kl must satisfy

e2ikl l

(
kl − iv

kl + iv

)(
kl − iv′

kl + iv′

)
+ 1 = 0. (3.10)

3.1. Spectral determining function

Let {λj } be a set of positive solutions of F (+)BB′(k) = 0 where

F
(+)
BB′(k) = 1

2

[
1 + e2π ik

(
πk − iw

πk + iw

)(
πk − iw′

πk + iw′

)]
. (3.11)
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This function has two poles at πk = −iw and πk = −iw′ and an infinite number of zeros at
k = ±λj . We can set the order of λj as

0 � λ1 < λ2 < · · · < λj < λj+1 < · · · . (3.12)

The function (3.11) can be rewritten as

F
(+)
BB′(k) = eπ ik

(πk + iw)(πk + iw′)
[(π2k2 −ww′) cos(πk) + (w + w′)πk sin(πk)]

= eπ ik

(1 − i(πk/w))(1 − i(πk/w′))

∞∏
j=1

[
1 − k2

λ2
j

]
. (3.13)

(i) For DD (w → ∞ and w′ → ∞),

F
(+)
DD(k) = 1

2
(1 + e2π ik) = eπ ik cosπk = eπ ik

∞∏
j=1

(
1 − k2

(j − 1/2)2

)
(3.14)

λj = j − 1
2 j = 1, 2, . . . . (3.15)

(ii) For DN or ND (w → ∞ and w′ → 0, or w → 0 and w′ → ∞),

F
(+)
DN (k) = F

(+)
ND (k) = 1

2
(1 − e2π ik) = −ieπ ik sinπk = −ieπ ikπk

∞∏
j=2

(
1 − k2

(j − 1)2

)

(3.16)

λ1 = 0 λj = j − 1 j = 2, 3, . . . . (3.17)

(iii) For NN (w → 0 and w′ → 0),

F
(+)
NN (k) = 1

2
(1 + e2π ik) = eπ ik cosπk = eπ ik

∞∏
j=2

(
1 − k2

(j − 3/2)2

)
(3.18)

λj = j − 3
2 j = 2, 3, . . . . (3.19)

There is a subtlety in the NN limit. Note that

lim
w,w′→0

λ1 = 0 (3.20)

0 = lim
w,w′→0

F
(+)
BB′ (λ1) �= lim

w,w′→0
F
(+)
BB′ (0) = F

(+)
NN (0) = 1. (3.21)

Although F (+)NN (0) �= 0, it is convenient to set λ1 = 0 at the NN point.
The other limits are

F
(+)
BD (k) = 1

2

[
1 − e2π ik

(
πk − iw

πk + iw

)]
= eπ ik

(1 − i(πk/w))

[
cos(πk)− πk

w
sin(πk)

]

= eπ ik

(1 − i(πk/w))

∞∏
j=1

[
1 − k2

λ2
j

]
(3.22)

F
(+)
BN (k) = 1

2

[
1 + e2π ik

(
πk − iw

πk + iw

)]
= −i

πk eπ ik

w − iπk

[
cos(πk) +w

sinπk

πk

]

= −i
πk(1 + w) eπ ik

(w − iπk)

∞∏
j=2

[
1 − k2

λ2
j

]
. (3.23)
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Comparing (3.13) with (3.23), we see that for small w or w′, λ1 approaches zero as

πλ1 ∼
(

ww′

(1 +w)(1 +w′)

)1/2

(3.24)

and one of the zero points of FBB′(k) is cancelled with a pole at k = −iw/π or at k = −iw′/π .

3.2. Zeta function regularization

Let us regularize the following divergent products by zeta function regularization:

W
(P)
BB′ :=

∏
m∈Z

∞∏
j=1

[(m
r

)2
+

(
πλj

l

)2
]1/2

(3.25)

W
(A)
BB′ :=

∏
s∈Z+1/2

∞∏
j=1

[( s
r

)2
+

(
πλj

l

)2
]1/2

. (3.26)

Similarly, by using the property of F (+)BB′(k), we can obtain the following regularized
expressions:

W
(P)
BB′ = q−(1/2)c(+)

BB′
∞∏
j=1

(1 − qλj )

=
√

8π2uu′

�(u + 1)�(u′ + 1)

(u
e

)u (u′

e

)u′

q̃1/24
∞∏
m=1

[
1 +

(
m− u

m + u

)(
m− u′

m + u′

)
q̃m
]

(3.27)

W
(A)
BB′ = q−(1/2)c(+)

BB′
∞∏
j=1

(1 + qλj )

= 2π

�(u + 1/2)�(u′ + 1/2)

(u
e

)u (u′

e

)u′

× q̃−1/48
∞∏
m=1

[
1 +

(
m− 1

2 − u

m− 1
2 + u

)(
m− 1

2 − u′

m− 1
2 + u′

)
q̃m−1/2

]
(3.28)

where

c
(+)
BB′ :=

∫ ∞

0
dt 2t ρ(it)

[
1 + e2πt

(
πt +w

πt −w

)(
πt +w′

πt −w′

)]−1

. (3.29)

Here we have regarded the infinite product
∞∏
m=1

(
1 +

u

m− 1
2

)
= �(u + 1) e−γu

�(2u + 1)

∞∏
m=1

eu/(m−(1/2)) (3.30)

as
∞∏
m=1

(
1 +

u

m− 1
2

)
=

√
π

�
(
u + 1

2

) (u
e

)u
(3.31)

by replacing the infinite sum by
∞∑
m=1

u

m− 1
2

→ lim
s→1

(
usζ(s, 1/2)− su

s − 1

)
= γ u + u logu− u + 2u log 2. (3.32)
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3.3. Fermionic boundary state

The boundary state for the fermionic sector is defined by relations

(∂2 − iv)ψ|σ 1=0|B(u)〉 = i(∂2 + iv)ψ̃ |σ 1=0|B(u)〉
〈B(u)|(∂2 + iv)ψ|σ 1=0 = −i〈B(u)|(∂2 − iv)ψ̃ |σ 1=0.

(3.33)

The mode expansion is given by

ψ(z) =
∑
s

ψs
1√
r

e−sz/r ψ̃(z̄) =
∑
s

ψ̃ s

1√
r

e−sz̄/r . (3.34)

s ∈ Z + 1
2 for NS and s ∈ Z for R, and

{ψs,ψs ′ } = δs+s ′,0 {ψ̃s, ψ̃s ′ } = δs+s ′,0. (3.35)

The Hamiltonian of this system can be expressed by using the zero-mode generators of the
Virasoro algebras:

H = 1

r

(
L0 + L̃0 − 1

24

)
. (3.36)

For the NS sector,

L0 =
∑
s>0

sψ−sψs L̃0 =
∑
s>0

sψ̃−sψ̃ s s ∈ Z + 1
2 (3.37)

and the unique NS ground state is normalized as 〈0|0〉 = 1.
The boundary state for the NS sector is given by

|B(u)〉NS = g+(u) exp

[∑
s>0

i

(
s − u

s + u

)
ψ−s ψ̃−s

]
|0〉 (3.38)

NS〈B(u)| = g+(u)〈0| exp

[∑
s>0

i

(
s − u

s + u

)
ψsψ̃s

]
. (3.39)

If we require

W
(A)
BB′ = NS〈B(u′)| e−lH |B(u)〉NS (3.40)

the normalization is fixed and we find

g+(u) =
√

2π

�
(
u + 1

2

) (u
e

)u
. (3.41)

For the R sector,

L0 =
∞∑
m=1

mψ−mψm +
1

16
L̃0 =

∞∑
m=1

mψ̃−mψ̃m +
1

16
(3.42)

and the ground states form the two-dimensional representation of Clifford algebra.
Our convention is

ψ0|σ 〉 = 1√
2
|µ〉 ψ0|µ〉 = 1√

2
|σ 〉 (3.43)

ψ̃0|σ 〉 = i√
2
|µ〉 ψ̃0|µ〉 = − i√

2
|σ 〉 (3.44)

〈σ |σ 〉 = 〈µ|µ〉 = 1 〈σ |µ〉 = 0. (3.45)

The states |σ 〉 and |µ〉 correspond to the order field and the disorder field respectively.
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Then, it holds that ψ0|σ 〉 = −iψ̃0|σ 〉, 〈σ |ψ0 = i〈σ |ψ̃0. Therefore, |σ 〉 is chosen to
satisfy the condition (3.33).

The boundary state for the R sector is given by

|B(u)〉R = g−(u) exp

[ ∞∑
m=1

i

(
m− u

m + u

)
ψ−mψ̃−m

]
|σ 〉 (3.46)

R〈B(u)| = g−(u)〈σ | exp

[ ∞∑
m=1

i

(
m− u

m + u

)
ψmψ̃m

]
. (3.47)

By requiring

W
(P)

BB′ = R〈B(u′)| e−lH |B(u)〉R (3.48)

we have

g−(u) = 21/4
√

2πu

�(u + 1)
. (3.49)

Thus, we obtain the same expressions of boundary states and g±(u) as in [16, 17].
Here we summarize the relations as follows:

W
(A)

BB′ = Tr(e−2πrHBB′ ) = NS〈B(u′)| e−lH |B(u)〉NS (3.50)

W
(P)
BB′ = Tr((−1)F e−2πrHBB′ ) = R〈B(u′)| e−lH |B(u)〉R. (3.51)

In [11], a part of the perturbation terms is identified with the boundary spin operators

σ
(0)
B (σ 2) = ω−1

0 a1(ψ + iψ̃)|σ 1=0 σ
(l)

B (σ
2) = ω−1

0 a2(ψ − iψ̃)|σ 1=l . (3.52)

They are nonlocal with respect to the fermionic fields ψ, ψ̃ and yield square root branch
points. Thus, the insertion of these operators at the boundaries forms a complete boundary
state which is a superposition of the NS and R boundary states:

|B; h〉 := 1√
2
(|B(u)〉NS + sign(h)|B(u)〉R). (3.53)

The fermionic part of the partition function is given by

Z(ψ)(h, h′) = 1
2 [Tr(e−2πrHBB′ ) + sign(hh′)Tr((−1)F e−2πrHBB′ )]

= 〈B; h′| e−lH |B; h〉. (3.54)

Here B = B(u), B ′ = B(u′) and u = rv = 1
2 rh

2, u′ = rv′ = 1
2 r(h

′)2. It is easy to see that
even number insertions of σB give a nonzero contribution to the partition function.

It is known that the Ising model has three conformally invariant boundary conditions: free
(f ), fixed up (+) and fixed down (−) [20].

Indeed, the corresponding boundary states are

|f 〉 = |B; h = 0〉 |±〉 = |B; h = ±∞〉. (3.55)

Thus the boundary state (3.53) is intermediate between the free boundary condition and the
fixed boundary conditions.

If the boundary magnetic fields h, h′ increase from 0 to ±∞, the open channel partition
function (3.54) flows from

Z(ψ)(0, 0) = Zff = q−1/48
∞∏
n=0

(1 + qn+1/2) (3.56)
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to

Z(ψ)(±∞,±∞) = Z±,± = 1

2

[
q−1/48

∞∏
n=0

(1 + qn+1/2) + q−1/48
∞∏
n=0

(1 − qn+1/2)

]
(3.57)

Z(ψ)(±∞,∓∞) = Z±,∓ = 1

2

[
q−1/48

∞∏
n=0

(1 + qn+1/2)− q−1/48
∞∏
n=0

(1 − qn+1/2)

]
. (3.58)

4. Discussion

In this paper, we have obtained the cylinder partition functions of a few two-dimensional
field theory models using the technique of zeta function regularization. (For computation on
geometries other than disc and cylinder, see [21].) A subtraction procedure (renormalization)
is introduced in order to reproduce the correct expression at the conformal points. From the
expression of the partition functions and with the help of the boundary states, the corresponding
g-functions are determined. These are main results of this paper.

These results for the partition functions should be proved by using the spectral zeta
function for the Laplacian −∂2. Some works on the zeta function regularization related to the
mixed (Robin) boundary condition are found in [22, 23].
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Appendix A. Casimir energies

In this appendix, we rewrite the spectral zeta functions

ζ
(+)
BB′(s) =

∞∑
j=1

1

λsj
ζ
(−)
BB′ (s) =

∞∑
j=1

1

νsj
Re s > 1 (A.1)

in an integral of Hermite type in order to examine their values at s = −1.
Naively, Casimir energies c(±)BB′ were expected to be ζ (±)BB′ (−1).
Recall that

F
(±)
BB′ (k) = 1

2

[
1 ± e2π ik

(
πk − iw

πk + iw

)(
πk − iw′

πk + iw′

)]
. (A.2)

Note that
∂

∂k
F
(±)
BB′ (k) = 2π iρ(k)

[
F
(±)
BB′ (k)− 1

2

]
(A.3)

where

ρ(k) = 1 +
w

π2k2 + w2
+

w′

π2k2 + (w′)2
(A.4)

1

2F (±)BB′ (k)
+

1

2F (±)BB′ (−k)
= 1. (A.5)
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Collecting these relations, we have

U(k) := ∂

∂k
logF (±)BB′ (k) = 2π iρ(k)

[
1 − 1

2F (±)BB′ (k)

]
= 2π iρ(k)

1

2F (±)BB′ (−k)
. (A.6)

Explicitly, it can be written as

∂

∂k
logF (+)BB′(k) = iπ − π

πk + iw
− π

πk + iw′ +
∞∑
j=1

(
1

k − λj
+

1

k + λj

)
(A.7)

∂

∂k
logF (−)BB′ (k) = iπ +

1

k
− π

πk + iw
− π

πk + iw′ +
∞∑
j=1

(
1

k − νj
+

1

k + νj

)
. (A.8)

Let µj = λj (νj ) for + (−). For a natural number M, let us choose a number N such that
µM < N < µM+1.

For simplicity, we assume w,w′ > 0. Then µ1 > 0 and we can choose a real number δ
such that 0 < δ < µ1.

Let a union of segments of the real axis I be

I = I0 ∪ I1 ∪ · · · ∪ IM (A.9)

where

I0 = [δ, µ1 − ε] Ij = [µj + ε, µj+1 − ε] (j = 1, . . . ,M − 1)

IM = [µM + ε,N]. (A.10)

Here ε is an infinitesimally small positive number.
For an analytic functionW(k) bounded on the strip 0 � Re k � N , we have

0 =
∫
C1

dk U(k)W(k). (A.11)

The integration contour C1 is shown in figure 1. We get

0 =
∫
I

dk U(k)W(k) + i
∫ R

0
dt U(N + it)W(N + it)− i

∫ R

δ

dt U(it)W(it)

− i
∫ π/2

0
dθ δ eiθU(δ eiθ )W(δ eiθ )−

∫ N

0
dt U(iR + t)W(iR + t)

−
M∑
j=1

i
∫ π

0
dθ ε eiθU(µj + ε eiθ )W(µj + ε eiθ ). (A.12)

If we take the R → ∞ limit, we have

iπ
M∑
j=1

W(µj ) + O(ε) =
∫
I

dk U(k)W(k)− i
∫ ∞

δ

dt U(it)W(it)

+ i
∫ ∞

0
dt U(N + it)W(N + it)− i

∫ π/2

0
dθ δ eiθU(δ eiθ )W(δ eiθ ). (A.13)

Similarly, from

0 =
∫
C2

dk U(−k)W(k) (A.14)
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� � � � � � � ��
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� � � � � � � ��

�

�

�

Figure 1. Contours of integration.

(see figure 1 for the integration contour C2), we have

iπ
M∑
j=1

W(µj ) + O(ε) =
∫
I

dk U(−k)W(k) + i
∫ ∞

δ

dt U(it)W(−it)

− i
∫ ∞

0
dt U(−N + it)W(N − it)− i

∫ π/2

0
dθ δ e−iθU(−δ e−iθ )W(δ e−iθ ).

(A.15)

Adding (A.13) and (A.15) gives

M∑
j=1

W(µj ) =
∫ N

δ

dk ρ(k)W(k)− 1

2π

∫ ∞

δ

dt U(it) [W(it) −W(−it)]

+
1

2π

∫ ∞

0
dt[U(N + it)W(N + it)− U(−N + it)W(N − it)]

− 1

2π
δ

∫ π/2

0
dθ [eiθU(δ eiθ )W(δ eiθ ) + e−iθU(−δ e−iθ )W(δ e−iθ )]. (A.16)

Here we use a relation

U(k) + U(−k) = 2π iρ(k) (A.17)

and take the ε → 0 limit.
Let us set

W(k) = k−s = |k|−s e−s arg(k) −π < arg(k) < π. (A.18)
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Then for Re s > 1, we have (asM → ∞)

ζ
(±)
BB′ (s) =

∫ ∞

δ

dk ρ(k)
1

ks
− 2 sin

(π
2
s
) ∫ ∞

δ

dt
t−s

1 ± e2πt
(
πt+w
πt−w

) (
πt+w′
πt−w′

)ρ(it)
− 1

2π
δ1−s

∫ π/2

0
dθ [e−i(s−1)θU(δ eiθ ) + ei(s−1)θU(−δ e−iθ )]. (A.19)

The second and the third terms on the right-hand side of equation (A.19) make sense in
the whole complex s-plane. When δ → 0, the third term vanishes for Re s < 0.

Let us consider the first term,∫ ∞

δ

dk ρ(k)k−s = 1

s − 1
δ−s+1 + V (δ,w, s) + V (δ,w′, s). (A.20)

Here

V (δ,w, s) =
∫ ∞

δ

dk
1

ks

w

π2k2 +w2
. (A.21)

This integral makes sense for Re s > −1.
Note that for Re s > −1, V (δ, 0, s) = 0, V (δ,∞, s) = 0.
For 0 < w < ∞, it is possible to change the integration variable from k to

t = w2/(π2k2 + w2), and then V (δ,w, s) becomes

V (δ,w, s) = 1

2π

(π
w

)s ∫ η

0
dt t (s−1)/2(1 − t)−(s+1)/2

= 1

π(s + 1)

(π
w

)s
η(s+1)/2F

(
s + 1

2
,
s + 1

2
; s + 3

2
; η
)

(A.22)

where η = w2/(π2δ2 + w2) and F(α, β; γ ; η) is the hypergeometric function. With the help
of properties of the hypergeometric function, we can see that V (δ,w, s) has simple poles at

s = 1 − 2m m = 1, 2, 3, . . . . (A.23)

For −3 < Re s < 1, δ → 0 limit gives

V (0, w, s) = 1

2 sin((s + 1)π/2)

(π
w

)s
. (A.24)

Thus we conclude that ζ (±)BB′ (−1) diverges for 0 < w,w′ < ∞.
We drop these divergent terms by hand and assume that the Casimir energies are given by

c
(±)
BB′ :=

∫ ∞

0
dt 2t ρ(it)

[
1 ± e2πt

(
πt +w

πt −w

)(
πt + w′

πt −w′

)]−1

. (A.25)

These are finite and give correct values at conformal points. Indeed,∫ ∞

0
dt

2t

1 + e2πt
= 1

24

∫ ∞

0
dt

2t

1 − e2πt
= − 1

12
. (A.26)

Integrating by parts,we can see that the above expressions of the Casimir energies are consistent
with other expressions [9, 16].

For SBQD model, ζ (±)BB′ (−1) appears only in a factor q(ζ
(−)
BB′ (−1)−ζ (+)

BB′ (−1))/2. In this case, the
divergent terms cancel each other:

lim
s→−1

(
ζ
(−)
BB′ (s)− ζ

(+)
BB′(s)

) = c
(−)
BB′ − c

(+)
BB′. (A.27)

So we do not need to discard the divergent terms.
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